Tables of best known results
on Taxicab and Cabtaxi numbers, in May 2007
(Tables built when the JIS & PLS
articles were written in 2007. Today, better bounds are known:
see the updated tables.)
We knew in November 2006:
Nothing seemed to be known on bigger n. I proposed to extend the range of known information on these numbers, with:
The upper bounds of Taxicab(7) and Cabtaxi(10) may have a chance of being the correct Taxicab and Cabtaxi numbers. But the probability decreases when n increases, and is close to 0 for Taxicab(19) and Cabtaxi(30).
(*) probability greater than 99.8%, according to a paper of 2005 by C. S. Calude - E. Calude - M. J. Dinneen, http://www.cs.auckland.ac.nz/CDMTCS/researchreports/261cris.pdf
Taxicab(2) |
= 1729 |
Bernard Frenicle de Bessy |
1657 |
Taxicab(3) |
= 87539319 |
John Leech (UK) |
1957 |
Taxicab(4) |
= 6963472309248 |
Edwin Rosenstiel, John A. Dardis, |
1989 |
Taxicab(5) |
= 48988659276962496 |
John A. Dardis (UK) |
1994 |
Taxicab(6) |
≤ 24153319581254312065344 |
Randall L. Rathbun (USA) |
2002 |
Taxicab(7) |
≤ 24885189317885898975235988544 |
: - ) (France) |
Dec. 2006 |
Taxicab(8) |
≤ 50974398750539071400590819921724352 |
||
Taxicab(9) |
≤ 136897813798023990395783317207361432493888 |
||
Taxicab(10) |
≤ 7335345315241855602572782233444632535674275447104 |
||
Taxicab(11) |
≤ 2818537360434849382734382145310807703728251895897826621632 |
||
Taxicab(12) |
≤ 73914858746493893996583617733225161086864012865017882136931801625152 |
||
Taxicab(13) |
see List 3 in the Appendix of the JIS
paper |
May 2007 |
Cabtaxi(2) |
= 91 |
François Viète (France), |
1591 |
Cabtaxi(3) |
= 728 |
Edward B. Escott (USA) |
1902 |
Cabtaxi(4) |
= 2741256 |
Randall L. Rathbun (USA) |
~1992 |
Cabtaxi(5) |
= 6017193 |
||
Cabtaxi(6) |
= 1412774811 |
||
Cabtaxi(7) |
= 11302198488 |
||
Cabtaxi(8) |
= 137513849003496 |
Daniel. J. Bernstein (USA) |
1998 |
Cabtaxi(9) |
= 424910390480793000 |
Duncan Moore (UK) |
2005 |
Cabtaxi(10) |
≤ 933528127886302221000 |
: - ) (France) |
Dec. 2006 - |
Cabtaxi(11) |
≤ 8904950890305189093226944 |
||
Cabtaxi(12) |
≤ 1912223147184127402358643000 |
||
Cabtaxi(13) |
≤ 23266019031789278104497609381000 |
||
Cabtaxi(14) |
≤ 567434938166308703690592195193209000 |
||
Cabtaxi(15) |
≤ 31136289927061691188910174934641764248000 |
||
Cabtaxi(16) |
≤ 1577146493675455843791867090964409284453944000 |
||
Cabtaxi(17) |
≤ 23045156159180392847591977008030799542699242304000 |
||
Cabtaxi(18) |
≤ 181609634582880844694340486417510510845396106201660096000 |
||
Cabtaxi(19) |
≤ 298950477236981197723488725070538575992924211134299879660632000 |
||
Cabtaxi(20) |
≤ 2149172021033860338362430683389430843511963750524516489973424104024000 |
||
Cabtaxi(21) |
see List 4 in the Appendix of the JIS
paper |
May 2007 |
Warning! These numbers are no more the best known bounds! See the updated tables of Taxicab and Cabtaxi numbers.
Decompositions of these upper bounds:
And list of bigger upper bounds:
Warning! Several numbers in the above lists of 2007 are no more the best known bounds! See the updated lists.